

NUWC-NPT Technical Document 12,036
15 April 2011

An Efficient Implementation of a Batch-
Oriented, Multitarget, Multidimensional
Assignment Tracking Algorithm with
Application to Passive Sonar

Sunil Mathews
Sensors and Sonar Systems Department

Naval Undersea Warfare Center Division
Newport, Rhode Island

Approved for public release; distribution is unlimited.

PREFACE

 This report was prepared under Project No. A622101, “Batch
Tracking and Array Data Fusion for Passive Sonar,” principal
investigator Sunil Mathews (Code 1511). The research was funded
by the Naval Undersea Warfare Center Division, Newport
In-House Laboratory Independent Research and Independent
Applied Research Program (Code 01CTO).

 This document publishes research submitted as a thesis in
March 2011 to fulfill the requirements for the degree of Master of
Science in Engineering Acoustics from the Naval Postgraduate
School.

Reviewed and Approved: 15 April 2011

David W. Grande

Head, Sensors and Sonar Systems Department

REPORT DOCUMENTATION PAGE
 Form Approved

 OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall
be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OPM control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
15-04-2011

2. REPORT TYPE

Technical
3. DATES COVERED (From – To)

4. TITLE AND SUBTITLE

An Efficient Implementation of a Batch-Oriented, Multitarget, Multidimensional
Assignment Tracking Algorithm with Application to Passive Sonar

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Sunil Mathews

5.d PROJECT NUMBER
 A622101
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Undersea Warfare Center Division
1176 Howell Street
Newport, RI 02841-1708

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 TD 12,036

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITOR’S ACRONYM

11. SPONSORING/MONITORING
 REPORT NUMBER

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 This research investigates the use of two versions of a batch-oriented, multidimensional assignment tracking algorithm to
examine target crossings that are on the order of 100 scans in duration. The simulations use outputs in one dimension (bearings
only) from a passive sonar line array. Linear programming relaxation is used to solve the assignment problem for an exhaustive
set of measurement-to-track N-tuple costs along the batch. The implementation of the cost evaluations used for the objective
function is analyzed for efficiency. The objective function is minimized subject to certain constraints. The constraints are set up
such that each measurement-to-track assignment is exclusive per scan along the batch. The algorithm is generic and can be
extended to N dimensions (ND). Missing measurements are accounted for as part of the assignment model. An efficient version
of the ND assignment is developed to increase the batch length for acceptable runtime performance. Batch lengths of up to 15
scans, equivalent to a 16D assignment, have been developed and tested on various levels of clutter data. Results are tested via
100-trial Monte Carlo simulations for the two algorithms as applied to the long-duration passive sonar crossing targets case with
various clutter density and filter settings.

15. SUBJECT TERMS

Batch Tracking Clutter Kalman Filter Multidimensional Assignment
Multitarget Tracking Passive Sonar Tracking

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
 OF
 PAGES

68

19a. NAME OF RESPONSIBLE PERSON

 Sunil Mathews
a. REPORT

(U)

b. ABSTRACT

(U)

c. THIS PAGE

(U) 19b. TELEPHONE NUMBER (Include area code)
 (401) 832-8212

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39-18

 i

TABLE OF CONTENTS

Section Page

 LIST OF ILLUSTRATIONS .. ii

 LIST OF TABLES ... iv

 LIST OF ABBREVIATIONS AND ACRONYMS ..v

I INTRODUCTION ...1
I.A Background ..2
I.B Review of Batch-Oriented MTT Algorithms ...4

II ALGORITHM DESCRIPTION...7
II.A Motion Model Assumptions ..7
II.B Measurement Model Assumptions ..7
II.C Algorithm I: MDA Algorithm ..8
II.C.1 Overview of the MDA Algorithm ..8
II.C.2 Track Initialization ...9
II.C.3 Cost Generation ...10
II.C.4 Linear Programming Overview ...22
II.C.5 ND Assignment ..22
II.C.6 Kalman Filter Update ...24
II.D Algorithm II: A Faster, Suboptimal Version via 2D-ND MDA24
II.D.1 Overview of Algorithm II ..24
II.D.2 Track Initialization ...27
II.D.3 Track Gating ..27
II.D.4 2D LP Assignment Single Scan ...28
II.D.5 2D-ND LP Assignment Multiscan ...28
II.D.6 Kalman Filter Update Multiscan ..31
II.D.7 Example ...31

III SIMULATION AND RESULTS ...35

IV CONCLUSIONS..45

 LIST OF REFERENCES ...47

 ACKNOWLEDGMENTS ...51

 APPENDIX ..53

 ii

LIST OF ILLUSTRATIONS

Figure Page

 1 Overview of MDA tracking algorithm ..9

 2 Example of 4D assignment case cost mapping with two tracks and three
measurements, including the missing measurement ...14

 3 Example of 4D cost tree mapping for Track 1 ...15

 4 Overview of Algorithm II: 2D-ND LP MDA tracking algorithm26

 5 Track gate switching is performed at time scans tn start and tn end. The 2D
LP tracker (single-target, single-scan) is used prior to tn_start and after
tn end. The 2D-ND LP tracker (multitarget, batch) is used between time
scans tn_start and tn_end..28

 6 Example of 6D assignment for two-target case with 500 scans and target
crossings for 100 scans ..32

 7 Sample simulated case with two targets in linear straight-line motion
through a 100-scan crossing in a cluttered environment, λ = 0.01. In a
zoom view in the area of the target crossing, or approximately 100 time
scans, the solid green lines represent the true target trajectories35

 8 Sample clutter levels and track crossing scenarios used as input and output
to obtain test results: zero clutter scenario with both tracks on target, a
clutter level of 0.01 and only one track on target, a clutter level of 0.02
and both tracks bounce, and a clutter level of 0.05 and neither track is
on target ...37

 9 Results from Algorithm I: ND LP MDA version for straight-line model,
σq = 0.0005. For each group of bars, the three numbers at the bottom
(1, 2, 3) represent the batch length (N − 1), with 100 trials per bar. The
groups, left to right, represent clutter density parameter λ at 0.0, 0.01,
0.02, 0.05 ...38

 10 Results from Algorithm II: 2D-ND MDA fast version, σq = 0.0005. For
each group of bars, the five numbers at the bottom (1, 2, 3, 5, 10)
represent the batch length (N − 1), with 100 trials per bar. The groups,
left to right, represent the clutter density parameter λ at 0.0, 0.01, 0.02,
0.05 ..40

 11 Results from Algorithm II: 2D-ND MDA, σq = 0.002. For each group of
bars, the six numbers at the bottom (1, 2, 3, 5, 10, 15) represent the
batch length (N − 1), with 100 trials per bar. The groups, left to right,
represent clutter density parameter λ at 0.0, 0.01, 0.02, 0.0542

 12 Average NEES for Algorithm I: 2D LP, 0.0005qσ = ...53

 13 Average RMSE for Algorithm I: 2D LP, 0.0005qσ = ..53

 iii

LIST OF ILLUSTRATIONS (Cont'd)

Figure Page

 14 Average NEES for Algorithm I: 3D LP, 0.0005qσ = ...54

 15 Average RMSE for Algorithm I: 3D LP, 0.0005qσ = ..54

 16 Average NEES for Algorithm I: 4D LP, 0.0005qσ = ...55

 17 Average RMSE for Algorithm I: 4D LP, 0.0005qσ = ..55

 18 Average NEES for Algorithm II: 2D-3D LP, 0.0005qσ = 56

 19 Average RMSE for Algorithm II: 2D-3D LP, 0.0005qσ = 56

 20 Average NEES for Algorithm II: 2D-4D LP, 0.0005qσ = 57

 21 Average RMSE for Algorithm II: 2D-4D LP, 0.0005qσ = 57

 22 Average NEES for Algorithm II: 2D-6D LP, 0.0005qσ = 58

 23 Average RMSE for Algorithm II: 2D-6D LP, 0.0005qσ = 58

 24 Average NEES for Algorithm II: 2D-11D LP, 0.0005qσ = 59

 25 Average RMSE for Algorithm II: 2D-11D LP, 0.0005qσ = 59

 26 Average NEES for Algorithm II: 2D-3D LP, 0.002qσ = 60

 27 Average RMSE for Algorithm II: 2D-3D LP, 0.002qσ = 60

 28 Average NEES for Algorithm II: 2D-4D LP, 0.002qσ = 61

 29 Average RMSE for Algorithm II: 2D-4D LP, 0.002qσ = 61

 30 Average NEES for Algorithm II: 2D-6D LP, 0.002qσ = 62

 31 Average RMSE for Algorithm II: 2D-6D LP, 0.002qσ = 62

 32 Average NEES for Algorithm II: 2D-11D LP, 0.002qσ = 63

 33 Average RMSE for Algorithm II: 2D-11D LP, 0.002qσ = 63

 34 Average NEES for Algorithm II: 2D-16D LP, 0.002qσ = 64

 35 Average RMSE for Algorithm II: 2D-16D LP, 0.002qσ = 64

 iv

LIST OF TABLES

Table Page

 1 Example of 4D cost enumeration for Track 1: three measurements per

scan ..16

 2 Number of N-tuple cost evaluations c for various dimensions N with a
fixed number of measurements M per scan ...17

 3 Number of Kalman filters needed to generate cost c for various
dimensions N with a fixed number of measurements M per scan17

 4 Example 4D with calculated costs c: circled sections are stored cost
values ...19

 5 Number of Kalman filters needed in reduced set where previously
calculated costs c and filter outputs are stored for various dimensions N
with a fixed number of measurements M per scan ..21

 6 Ratio of number of Kalman filters calculated for full set (per Table 3) vs
reduced set (per Table 5). In both sets, N is the dimensional size, and
there is a fixed number of measurements M per scan21

 7 Comparison of Algorithm I and II functions for calculating the number of
cost evaluations and the number of Kalman filters in a reduced set for a
single track and a batch length (N − 1), where m is the varying number
of measurements for scan n from 1 to (k − 1), and k is the dimensional
assignment from 2 to N. The value ln is the number of 2D LP extracted
measurements for scan n from 1 to (k − 1), and k is the dimensional
assignment from 2 to N. Note that, for any scan n, ln ≤ L where L is the
number of tracks ..33

 8 Algorithm I correct track crossings (both targets are being tracked) in 100
trials if σq = 0.0005, with 95% confidence intervals. Batch lengths are
1, 2, and 3 for λ = 0.0, 0.01, 0.02, and 0.05 ...39

 9 Algorithm II correct track crossings (both targets are being tracked) in 100
trials if σq = 0.0005, with 95% confidence intervals. Batch lengths are
1, 2, 3, 5, and 10 for λ = 0.0, 0.01, 0.02, and 0.05. ..41

 10 Algorithm II correct track crossings (both targets are being tracked) in 100
trials if σq = 0.002, with 95% confidence intervals. Batch lengths are 1,
2, 3, 5, 10, and 15 for λ = 0.0, 0.01, 0.02, and 0.05. ..43

 v (vi blank)

LIST OF ABBREVIATIONS AND ACRONYMS

2D Two-dimensional
c Cost
C Kalman filter measurement matrix
D Dimensional
JPDA Joint Probabilistic Data Association (algorithm)
KF Kalman filter
L Number of tracks
ln Number of 2D LP filtered measurements
LP Linear programming
m Varying number of measurements per scan
M Fixed number of measurements per scan
MDA Multidimensional assignment
MHT Multi-hypothesis tracker
MTT Multitarget tracking
n Scan index in a batch
N Number (dimensions)
NEES Normalized estimation error squared
ND N-dimensional
No. Number
NP Nondeterministic polynomial time
PD Probability of detection
PDA Probabilistic data association
PMHT Probabilistic multi-hypothesis tracker
ρ Binary decision variable
RMSE Root-mean-square error
s Epoch scan index
SNR Signal-to-noise ratio
TMA Target motion analysis
u Binary measurement index value
λ Clutter density
λe Kalman filter likelihood clutter density

 1

AN EFFICIENT IMPLEMENTATION OF A
BATCH-ORIENTED, MULTITARGET, MULTIDIMENSIONAL ASSIGNMENT

TRACKING ALGORITHM WITH APPLICATION TO PASSIVE SONAR

I. INTRODUCTION

This study investigates the implementation of two versions of a batch-oriented,

multidimensional assignment (MDA) approach for tracking contacts with long-duration

crossings, on the order of 100 scans for a single dimensional space. The environment

being simulated is that of the passive sonar string in a line array with bearings-only

information. The model incorporates multitarget tracking (MTT) in a cluttered

environment with missing measurements. Linear programming (LP) relaxation is used to

solve the cost assignment matrix. The assignment costs are calculated via the Kalman

filter likelihood function. A constraint matrix is set up for the various batch lengths, and

the assignment problem is solved via an LP package. This study concentrates on using

efficient techniques to eliminate many of the redundancies in generating the cost

assignment matrix, and a single-scan, forward-looking filtering method is developed to

further reduce the number of generated cost evaluations.

The algorithm is generic and can be extended to the N-dimensional (ND)

assignment problem. The term ND refers to a number N of dimensions D where the first

dimension refers to the tracker state estimates and covariance from the previous scan, and

(N − 1) dimensions refers to the batch length in time for the subsequent scans. To

minimize computational requirements, a suboptimal version of the algorithm was

developed and tested. The suboptimal version is a faster implementation of the ND

assignment algorithm, and results have been processed up to 16D. Simulated results have

been processed up to 4D for the standard implementation of the algorithm. The efficient

implementation utilizes (1) a two-dimensional (2D) LP module as a filtering procedure to

extract measurements in clutter and (2) a skip factor of the length of the batch in

processing the ND assignment. The standard implementation processes the ND

assignment and keeps only the first scan’s measurement of the batch, with the procedure

repeated for consecutive scans via a sliding batch.

 2

Comparisons are performed for various cases. Test data are generated in a

cluttered environment via simulation and processed with various clutter parameter and

batch settings. In this study, only simulations with linear motion model targets were

considered, and the test data simulate detections obtained in a passive sonar environment

for target crossings. Monte Carlo runs are conducted for 100 trials for the various cases.

The results show that the suboptimal but fast implementation tracked correctly through

long-duration crossings in a much larger percentage of the trials—over 90%—than the

standard implementation—less than 30% of the trials.

A. BACKGROUND

A passive line array in a typical ocean environment detects large vessels such as

tankers and freighters at a long distance, so that contact information is generally

“bearings only.” When two of these distant contacts cross in bearing, the crossing

duration can be on the order of minutes. During the crossing, if the contacts are not of

approximately equal signal-to-noise ratio (SNR), detections will be assigned to the higher

SNR contact, and the lower SNR track will be lost. For contacts that have equal

probability of detection (PD), Willett et al. [1] have recently shown that the estimated

tracks generated with a standard assignment model exhibit a repulsion behavior during

the crossing that violates the expected behavior of these large contacts, i.e., that they are

known to travel at constant course and speed and cannot make sudden changes because of

their size. This repulsion behavior causes problems downstream for algorithms that

require state estimates to be consistent with contact trajectory.

This study concentrates on utilizing a batch-style algorithm to track targets with

equal PD in a long-duration crossing. MDA techniques (generally batch-oriented) are

used to investigate tracking of long-duration crossings. Willet et al. [1] explored the use

of batch-oriented tracking algorithms for the linear crossing case. The algorithms

discussed in this thesis can be generalized to N dimensions. Solving this N-dimensional

batch assignment is considered to be “NP hard” (where NP means nondeterministic

polynomial time) for the case in which the dimensional value N ≥ 3; therefore, linear

programming relaxation techniques are used. An off-the-shelf software package

(LP_SOLVE) [2], [3] is used to solve the objective function for the assignment problem.

 3

Three algorithms—a modified probabilistic multi-hypothesis tracker (PMHT), a multi-

hypothesis tracker (MHT), and an MHT with rollout—were investigated and tested in [1],

and those simulations and test results are the foundation for the simulated results in this

study.

In the passive sonar environment, the contact detections from a line array are

processed in sequence by a beamformer and a detector and subsequently sent to

postprocessing algorithms such as tracking and classification algorithms. Tracks are then

formed for the postdetection data and sent to other postprocessing algorithms that require

tracks as inputs, such as target motion analysis (TMA) algorithms [4], [5], [6]. In the

scope of this thesis, simulations are developed that represent the postbeamformer output

of a detector for a line array of hydrophones.

A beamformer [7], [8] is essentially a transformation from the hydrophone’s or

element’s “time” space to “bearing” space (i.e., beam angle or conical) space. In this

thesis, a line array of elements is considered. A beamformer from a line array of

elements produces a fixed number of beams, based on directional angles (bearings), by

delaying and summing the time series from each element. A line array has only a single

dimension for its observation space, which is its conical beam space. The outputs of the

beamformer are sent to a detection process that will filter and normalize the data to

eliminate the unneeded frequency ranges and preserve the ranges of interest. The

detector outputs are also assumed to be normalized spatially to have a constant noise

background. It is assumed in this study that the outputs of the detector are peak-picked.

A peak-picked value is any measurement in the detector output above a preselected

threshold. Because the beamformer has a fixed number of beams, the peak-picked values

from the detector provide only discrete measurements. These discrete measurements are

interpolated based on amplitude or other criteria to provide a finer estimate of the

measurements at each scan. These fine measurements will be sent to a tracking

algorithm.

The crossing target case considered is the long-duration crossing following a

linear trajectory. Test results are processed via Monte Carlo simulation for various

clutter levels and various batch lengths.

 4

B. REVIEW OF BATCH-ORIENTED MTT ALGORITHMS

Recent developments in MTT and data fusion technologies are all pointing to the

need to include batch frames of data in order to achieve optimal performance. The

current batch-oriented MTT algorithms include four classes—the PMHT, the MHT, the

batch-oriented joint probabilistic data association (JPDA) tracker, and the MDA tracker.

The PMHT developed by Streit and Luginbuhl [9], [10] is one batch-oriented algorithm

that has shown promise for passive sonar and other applications. However, the PMHT

does not directly produce accurate error covariance matrices for the track estimates; a

separate computation is required [1]. The MHT, as originally proposed by Reid [11], has

a batch-oriented framework where tracks are constructed based on enumeration of all

possible measurement-to-track association hypotheses along a batch. As time evolves,

the number of tracks grows exponentially, based on new measurement arrivals with each

scan. For practical implementation, current MHT implementations are suboptimal [12]

because of computational processing and memory limitations associated with using fixed-

size batch lengths. To limit the exponential growth of the number of tracks, even with a

fixed batch length, ad hoc logic is used to prune tracks that are infeasible and meet

certain criteria at a subsequent scan. This type of deferred decision logic can only be

applied when using a batch-style tracker. The JPDA algorithm [13, pp. 310–319], [14] is

a true multitarget tracking algorithm that produces consistent state estimates (i.e.,

accurate state and covariance estimates), but batch extensions [15], [16], [17] are still

very limited (batch lengths of less than three scans) in the current state of the art.

Further, the current version of the algorithm is prone to track segmentation, because of

the track coalescence effect of PDA style trackers [18]. In PDA-style trackers, the tracks

tend to merge, i.e., coalesce, as they cross, which requires initialization of a new track to

replace the segment not tracked past the crossing. The MDA algorithm [19], [20] utilizes

an optimization framework, and an enumeration of all of the possible measurement-to-

track costs is calculated along the batch. Cost minimization is performed via several

techniques. Lagrangian relaxation is used in [21], whereas the interior point linear

programming is used in [22]. In [2], a mixed integer linear programming (LP) relaxation

method is utilized to minimize the assignment cost matrix with an open source solver,

LP_SOLVE [3]. The MDA framework is based on 0-1 integer assignments as originally

 5 (6 blank)

proposed in [23] via 0-1 integer linear programming, where tracks are given discrete

assignments with one measurement per scan and are not allowed to share measurements,

based on explicit constraints placed on the optimization. An LP-based method to produce

mixed integer assignments is explored in [24]. The current work will investigate an

implementation of the MDA algorithm that uses linear programming and incorporates

longer batch lengths into this framework. The motivation for longer batch lengths is the

premise that extending the batch length to cover the tracks for periods before and after

the crossing period will aid in the long-duration crossing target problem by providing

enough data on the contact positions to better predict the correct trajectories. This

algorithm will be analyzed with simulated results related to the passive sonar, long-

duration crossing tracks problem. A suboptimal method is also developed to reduce the

computational load of the algorithm—by reducing the number of cost evaluations—to

further increase the batch length.

This thesis is organized as follows. In Chapter II, the two algorithms are

described and the motion model and measurement model assumptions are formulated.

An implementation of the MDA algorithm is presented as Algorithm I. The 2D-ND

MDA algorithm, which is a more efficient—and therefore faster—version, is presented as

Algorithm II. In Chapter III, which presents the results, the two algorithms are applied to

the long-duration crossing target problem for a passive sonar line array. Simulation

results are presented for various test cases.

 7

II. ALGORITHM DESCRIPTION

A. MOTION MODEL ASSUMPTIONS

The true positional state vector for a contact at time scan ts+1 is given by

1

()
()

()
s

s
s

x t
t

x t+
 

=  
 

x A


, (1)

where t is the time of the scan, s is the scan index of the original data, and A is the state

transition matrix of the system.

1

0 1

T 
=  
 

A , (2)

where T is the scan period.

B. MEASUREMENT MODEL ASSUMPTIONS

The measurement model consists of received measurements normally distributed

about the fractional beam space x.

() () ()s s s rz t x t w t σ= + , (3)

2
rR σ= , (4)

where z(ts) is the linear measurement position at time scan ts, w is the white Gaussian

random noise at time scan ts, σr is the standard deviation of the measurement noise, and R

is the variance of the measurement noise.

The clutter measurements are assumed to have a Poisson random variable

distribution with spatial clutter density parameter λ. The contact’s probability of

detection PD is fixed, and spatial clutter density parameter λ is varied for the simulated

results.

 8

C. ALGORITHM I: MDA ALGORITHM

1. Overview of the MDA Algorithm

An overview of the MDA algorithm is provided as a flowchart in Figure 1. The

flow of the modules is based on [19] and [20], except for the LP_Assign section, which is

based here on LP relaxation instead of the Lagrangian relaxation technique. In this study,

it is assumed that the tracks are already initialized, where prior track estimates are known.

Based on the simulated data, the tracks are initiated on the first scan and the algorithm

processes the subsequent scans based on the initiated tracks via a sliding batch length (N

− 1). No track management functions, such as dropping, pruning, or merging tracks, are

considered in this study. No new tracks will be initiated subsequently after the first scan.

Much of the processing for an MDA-style algorithm takes place in the GenCost and

LP_Assign sections of Figure 1. The GenCost section computes the Kalman filter

likelihoods for every possible combination of measurement-to-track associations per scan

for the entire (N − 1) batch length. It also accounts for missing measurements per scan

for the entire batch length per track. This study concentrates largely on the GenCost

section of the algorithm and eliminates many of the deficiencies of this module. The

LP_Assign section performs the actual measurement-to-track assignment via LP

relaxation. This assignment can be performed via various methods such as Lagrangian

relaxation, interior point linear programming, and integer linear programming [2], [21]-

[24]. This study employs linear programming relaxation via an available open source

solver, LP_SOLVE [3].

 9

Figure 1. Overview of MDA tracking algorithm.

2. Track Initialization

The track initialization function initializes a track based on known input

parameters such as initial target (i.e., contact) position
0

()sx t and rate
0

()sx t . As part of

this study, the tracks are initialized on the initial simulated state estimates based on the

motion model assumptions. The rate term
0

()sx t is set to 0 for the initialized track’s

state. This function is performed at the first scan.

(Data received)
Measurements per

scan for a batch (N − 1) in
time forward

Generate costs
for each track for

every measurement
per scan in the batch

Solve for best
measurement-to-track

assignment via
linear programming

relaxation

Update states via
Kalman filter for

current scan

Initialization for new
 tracks

Process next scan

GenCost

LP_Assign

 10

3. Cost Generation

The generation of the cost evaluations used for the objective function of the MDA

algorithm was analyzed for efficiency in this research, and the resulting GenCost module

is described here in detail. Cost evaluations are calculated based on all possible

measurement-to-track assignment hypotheses including the missing measurement along a

batch. The cost evaluations are obtained by the Kalman filter negative log likelihood

calculation. For each track, a missing measurement is also accounted for in every scan of

the batch. Note that the following prediction equations are used only to compute the

likelihoods. At time tn, the start of each batch, the state estimates and covariance for each

track from the prior scan are used and the negative log likelihoods are cumulated along

the batch. These prior state estimates and covariances are from the Kalman filter update

section of this thesis.

Equations (5) through (13) are from standard Kalman filter theory. The Kalman

filter time update comprises the state prediction, given by Equation (5) and the state

prediction covariance, given by Equation (6).

1() ()n nt t+ =x Ax , (5)

1() ()n nt t+ ′= +P AP A Q , (6)

where the index n is the scan index in the batch, P
~

 is the predicted state prediction

covariance, P is the state prediction covariance in current time, and Q is the covariance of

the discrete-time process as defined in Equation (7).

(0)P is the initial covariance matrix set at

0

0

0

0

2
2

2
2

(0)

f
f

f
f

T

T

σ
σ

σ
σ

 
 
 =
 
 
 

P ,

where the Kalman filter’s initial function value variance
0

2
fσ is a parameter and is the

same for all tracks.

 11

The covariance matrix Q is based on a discrete white noise acceleration model

from [25, p. 274] and given by Equation (7):

4 3

2

3
2

4 2

2

q

T T

T
T

σ

 
 
 =
 
  

Q . (7)

The measurement prediction is given by

1 1ˆ() ()n nz t t+ += Cx , (8)

where C = [1 0] is the measurement matrix, and σq is the standard deviation used in the

process noise model.

The Kalman filter measurement update is computed using the innovation

covariance estimate ()1+ntS , filter gain estimate K(tn+1), measurement residual ()1+ntν ,

updated state estimate ()1+itx , and the updated state covariance ()1+itP , given by

Equations (9) through (13), respectively.

1 1() ()n nt t R+ + ′= +S CP C , (9)

1
1 1 1() () ()n n nt t t −

+ + +′=K P C S , (10)

1 1 1ˆ() () ()n n nt z t z tν + + += − , (11)

1 1 1 1() () () ()i n n nt t t tν+ + + += +x x K , (12)

1 1 1 1 1() () () () ()i i n n nt t t t t+ + + + + ′= −P P K S K . (13)

The cost calculation [24], [26] is performed via the following function for the

Kalman filter likelihood Λ:

1

2
11

1 1 1 1

2 ()1
() () () () () ln

2
e n

n n n n n
D

t
t t t t t

P

λ π
ν ν +−

+ + + +

 
 ′Λ = Λ + +
 
  

S
S . (14)

To process a missing measurement, a penalty is imposed where

 12

1() () ln(1)n n Dt t P+Λ = Λ − − . (15)

Note that eλ is the assumed clutter density used by the tracking algorithm in

Equation (14). The clutter density parameter differs from λ in the measurement model

section only in that eλ is a fixed parameter whereas λ varies with the simulation

scenario. Note that, in the results section, the case is examined where eλ equals λ , i.e.,

the matched case. If a missing measurement is being processed, only the Kalman time

update Equations (5) through (8) and (15) are performed. This set of equations—

Equations (5) through (15)—is used to calculate the Kalman filter likelihoods Λ that

serve as the costs forming the objective function for the MDA algorithm. The basic

computational unit for an MDA algorithm is a single Kalman filter update used to

calculate the negative log likelihoods. The details of the negative log likelihood function

are described in [24] and [26]. Reference [21] provides further details on the cost

calculation methodology used for the MDA algorithm. The calculations of Equations (5)

and (6) and (8) through (14) are performed for every track at each scan along the batch

for all possible combinations of measurement-to-track associations. For missing

measurements, Equations (5), (6), (8), and (15) are calculated. Note that Equations (14)

and (15) are used for processing actual measurements or missing measurements

respectively. A single likelihood represents a possible trajectory for a track along a

batch. Enumeration of all measurement-to-track (including missing measurement)

likelihoods needs to be calculated per track for the entire batch length. The number of

costs calculated per track is given by Equation (16) for a fixed number of measurements

per scan along a batch.

Number of costs (c) = 1NM − or
1

1

N

n
n

M
−

=
∏ , (16)

where M is the fixed number of measurements per scan n, including the missing

measurement, and (N − 1) is the batch length. The total number of costs is given by

Total number of costs = 1NM L− or
1

1

N

n
n

L M
−

=

⋅∏ , (17)

where L is the number of tracks.

 13

The total number of Kalman filters (KF) to process for all tracks in a batch is

given by

Total number of KF = 1 (1)NM L N− − or
1

1

(1)
N

n
n

L N M
−

=

⋅ − ⋅∏ . (18)

The Kalman filters used to compute the likelihoods are the basic unit as far as

computational costs for a MDA-style algorithm, since it must be performed numerous

times to evaluate all possible combinations of measurement-to-track costs. Note that

Equations (16) through (18) apply only to cases with a fixed number of measurements per

scan and can be used for rough algorithm loading calculations.

If the number of measurements changes from scan to scan, as normally happens,

the cost tree and the number of Kalman filters are calculated using generic equations.

The number of costs for any number of measurements and the number of Kalman filters

per track are calculated using Equations (19) and (20), respectively.

Number of costs (c) =
1

1

N

n
n

m
−

=
∏ , (19)

Number of KF updates =
1

1

(1)
N

n
n

N m
−

=

− ∏ , (20)

where m is the varying number of measurements for scan n from 1 to (N − 1).

Consider an example of two tracks with a batch length of (N − 1) of three scans

with three measurements in each scan, as shown in Figure 2. This is a 4D Assignment

with a batch length of three. The measurements include the missing measurement, where

there are only two actual measurements. The topology on the left represents the track

paths for Track 1 and on the right for Track 2. The measurements are labeled from one to

nine for the three measurements and three scans of data as shown. Note that

measurements 1, 4, and 7 are labeled as missing measurements. From Equation (16),

there are 33 or 27 possible paths for this specific example per track. As mentioned in

Equation (18), the total number of Kalman filter updates to process is 1 (1)NM L N− − . In

this case, it would require 162 Kalman filters to generate a total of 54 cost values c in a

single batch for the two tracks.

 14

It is important to note that there is no gating procedure in Algorithm I. In the

MDA procedure, as outlined in [19] and [21], there is no gating involved, with every

measurement-to-track hypotheses calculated, as is the case for Algorithm I. To improve

processing speed of MDA-style algorithms gating can be performed as shown in [27],

using a clustering technique along the batch. Any type of gating used makes the

association problem suboptimal, especially when processing increasing time depths. A

suboptimal gating technique based on a 2D-ND MDA algorithm is proposed for faster

processing. The gating procedure is described in Section D.3 for Algorithm II.

1 2 3

4 5 6

7 8 9

1 2

1 2 3

4 5 6

7 8 9

1 2Tracks

Scan 1

Scan 2

Scan 3

Missing Measurement

1 2 3

4 5 6

7 8 9

1 2

1 2 3

4 5 6

7 8 9

1 2Tracks

Scan 1

Scan 2

Scan 3

Missing Measurement

Figure 2. Example of 4D assignment case cost mapping with two tracks and three
measurements, including the missing measurement.

In Figure 3, the unraveled track paths are shown for Track 1; the measurement

indices in this figure are labeled as in Figure 2. Notice the tree structure of the different

paths from the track to the end of the batch. The main trunk of the tree is at the bottom

where the tracks start from the first scan, and the canopy, fringe branches are towards the

last scan.

 15

1 2 3

1

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

Scan 1

Scan 2

Scan 3

Track

1 2 3

1

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3

1

4 5 64 5 6 4 5 64 5 6 4 5 64 5 6

7 8 9 7 8 9 7 8 97 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 97 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 97 8 9 7 8 9 7 8 9

Scan 1

Scan 2

Scan 3

Track

Figure 3. Example of 4D cost tree mapping for Track 1.

Table 1 provides an enumeration of the binary value indexes ρ for obtaining the

cost evaluation tree depicted in Figure 3. As previously mentioned, for the 4D example,

27 cost terms c are calculated per track. The top row represents the numbered

measurements depicted in Figure 2. The leftmost column represents the associated

binary decision values ρ to the costs c. The four subscripted numerals to the decision

term ρ represent an N- tuple path along the batch for a given track. In Table 1, the first

term in the subscript represents Track 1’s costs and associated decision terms ρ, or the

index of the first dimension. The second term represents the measurement index in the

first scan, the third term represents the measurement index in the second scan, and so on.

A Kalman filter calculation is represented by a value of 1 in Table 1, and for this 4D

example there are 81 filters used per track.

These costs enforce the underlying assignment model where the constraints

imposed require that only one measurement is associated with a track per scan along a

batch and that multiple tracks can be associated with the missing measurement at the

same scan. This optimization procedure is described for Algorithm I in Section C.5.

 16

Measurement Index
 1 2 3 4 5 6 7 8 9

1000ρ 1 1 1

1001ρ 1 1 1

1002ρ 1 1 1

1010ρ 1 1 1

1011ρ 1 1 1

1012ρ 1 1 1

1020ρ 1 1 1

1021ρ 1 1 1

1022ρ 1 1 1

1100ρ 1 1 1

1101ρ 1 1 1

1102ρ 1 1 1

1110ρ 1 1 1

1111ρ 1 1 1

1112ρ 1 1 1

1112ρ 1 1 1

1120ρ 1 1 1

1121ρ 1 1 1

1122ρ 1 1 1

1200ρ 1 1 1

1201ρ 1 1 1

1202ρ 1 1 1

1211ρ 1 1 1

1212ρ 1 1 1

1220ρ 1 1 1

1221ρ 1 1 1

1222ρ 1 1 1

Table 1. Example of 4D cost enumeration for Track 1: three measurements per scan.

 17

In Table 2, the number of calculated costs c for a single track for various N

dimensional assignments from 2D to 10D assignment and number of measurements from

1 to 10 per scan are provided.

N \ M 1 2 3 4 5 6 7 8 9 10
2 1 2 3 4 5 6 7 8 9 10
3 1 4 9 16 25 36 49 64 81 100
4 1 8 27 64 125 216 343 512 729 1000
5 1 16 81 256 625 1296 2401 4096 6561 10000
6 1 32 243 1024 3125 7776 16807 32768 59049 100000
7 1 64 729 4096 15625 46656 117649 262144 531441 1000000
8 1 128 2187 16384 78125 279936 823543 2097152 4782969 10000000
9 1 256 6561 65536 390625 1679616 5764801 16777216 43046721 1E+08

10 1 512 19683 262144 1953125 10077696 40353607 1.34E+08 3.87E+08 1E+09

Table 2. Number of N-tuple cost evaluations c for various dimensions N with a fixed
number of measurements M per scan.

Table 3 provides the number of Kalman filters needed to generate the costs in

Table 2.

N \ M 1 2 3 4 5 6 7 8 9 10

2 1 2 3 4 5 6 7 8 9 10

3 2 8 18 32 50 72 98 128 162 200

4 3 24 81 192 375 648 1029 1536 2187 3000

5 4 64 324 1024 2500 5184 9604 16384 26244 40000

6 5 160 1215 5120 15625 38880 84035 163840 295245 500000

7 6 384 4374 24576 93750 279936 705894 1572864 3188646 6000000

8 7 896 15309 114688 546875 1959552 5764801 14680064 33480783 70000000

9 8 2048 52488 524288 3125000 13436928 46118408 1.34E+08 3.44E+08 8E+08

10 9 4608 177147 2359296 17578125 90699264 3.63E+08 1.21E+09 3.49E+09 9E+09

Table 3. Number of Kalman filters needed to generate cost c for various
dimensions N with a fixed number of measurements M per scan.

 18

As noted in [27] and [28], the costs calculated using the GenCost function, or

generating the Kalman filter negative log likelihood Λ, take up about 95% of the

computational requirement of an MDA-style of algorithm. In Table 3 for example, with

nine measurements and 7D assignment, over three million Kalman filter updates need to

be processed for a single track to generate all the costs in the batch. As the number of

tracks increase, the cost calculations and the number of Kalman filter updates to process

increase linearly with the numbers from Tables 2 and 3, respectively. If the cost

generation function is taking up much of the computational resources, then it is beneficial

to reduce the number of overall Kalman filter calculations along a batch per track. Some

of the cost generation inefficiencies can be eliminated because the Kalman filter negative

log likelihoods have previously been calculated for the initial scans of the batch. Storing

a select set of previously processed cumulative likelihoods, prior track filter state

estimates, and covariances makes these values available for reuse later in the processing,

which results in significant computational savings without any effect on the overall

algorithm. The circled sections in Table 4 show the costs that are part of the main trunk

of the tree that can be reused to calculate the canopy branches of the cost tree from Figure

3. It is observed that the number of links in the cost tree corresponds to the number of

Kalman filters to process. The main trunk sections are early in the batch, and the fringe

branches, representing the number of cost evaluations, are toward the end of the batch.

By using this technique, the number of Kalman filter updates to calculate in the 4D

example decreases from 162 to 78 filters for the two example tracks, which is a

significant savings without any impact on the integrity of the algorithm. Note that the

number of costs calculated for the objective function is still the same. The reduction in

the number of Kalman filters provides the computational savings to process the costs.

The equation used to calculate the number of reduced Kalman filter (KF) updates

for a fixed number of measurements M in a batch is given by the following special case

of the geometric series and generation function, where M > 1:

Number of reduced KF =
1

1

N
n

n

M
−

=
 =

1

NM M

M

−
−

. (21)

 19

Measurement Index

 1 2 3 4 5 6 7 8 9

1000ρ 1 1 1

1001ρ 1 1 1

1002ρ 1 1 1

1010ρ 1 1 1

1011ρ 1 1 1

1012ρ 1 1 1

1020ρ 1 1 1

1021ρ 1 1 1

1022ρ 1 1 1

1100ρ 1 1 1

1101ρ 1 1 1

1102ρ 1 1 1

1110ρ 1 1 1

1111ρ 1 1 1

1112ρ 1 1 1

1112ρ 1 1 1

1120ρ 1 1 1

1121ρ 1 1 1

1122ρ 1 1 1

1200ρ 1 1 1

1201ρ 1 1 1

1202ρ 1 1 1

1211ρ 1 1 1

1212ρ 1 1 1

1220ρ 1 1 1

1221ρ 1 1 1

1222ρ 1 1 1

Table 4. Example 4D with calculated costs c: circled sections are stored cost values.

 20

Even when processing a missing measurement, a Kalman filter time update must

be performed to calculate the state estimates for the next scan. The number of Kalman

time updates to process missing measurements is given by

Number of reduced KF time updates =
1

1

1

N
n

n

M
−

−

=
 =

1 1

1

NM

M

− −
−

. (22)

The total number of full Kalman filters to process real measurements along a

batch is given by

Number of reduced full KF =
1

1

1

()
N

n n

n

M M
−

−

=

− =
1

1
1

N NM M

M

−− −
−

 = 1 1NM − − . (23)

The generic equation to calculate the number of reduced Kalman filters for any

number of measurements in a batch, for a single track is given by

Number of reduced KF =
1

2 1

kN

n
k n

m
−

= =
∏ , (24)

where mn is the number of measurements for scan n from 1 to (k − 1), and k is the

dimensional assignment from 2 to N.

Table 5 shows the number of Kalman filters required using the efficient

methodology used in this study for N dimensions from 2D to 10D and a fixed number of

measurements per scan, from 1 to 10. From Table 3, as was mentioned previously in an

example, with nine measurements and 7D assignment, over three million Kalman filters

needed to be processed for a single track. In Table 5, with the reduced number of

Kalman filters with nine measurements and 7D assignment, the number of Kalman filters

dramatically decreases to less than 600,000—a more than fivefold savings.

Table 6 shows the savings in computation achieved with the reduced set of

Kalman filters based on the efficient storage methodology. This table gives the ratio of

the number of Kalman filters for each case in Table 3—the full set—to the number of

Kalman filters required for the same case in Table 5—the reduced set. As is expected, as

the N dimensional size and the number of measurements per scan increase, the

computational savings significantly increase. In the 10D case with 10 measurements per

scan, there is an eightfold decrease in the number of Kalman filters computed.

 21

N \ M 1 2 3 4 5 6 7 8 9 10

2 1 2 3 4 5 6 7 8 9 10
3 2 6 12 20 30 42 56 72 90 110
4 3 14 39 84 155 258 399 584 819 1110
5 4 30 120 340 780 1554 2800 4680 7380 11110
6 5 62 363 1364 3905 9330 19607 37448 66429 111110
7 6 126 1092 5460 19530 55986 137256 299592 597870 1111110
8 7 254 3279 21844 97655 335922 960799 2396744 5380839 11111110
9 8 510 9840 87380 488280 2015538 6725600 19173960 48427560 1.11E+08

10 9 1022 29523 349524 2441405 12093234 47079207 1.53E+08 4.36E+08 1.11E+09

Table 5. Number of Kalman filters needed in reduced set where previously
calculated costs c and filter outputs are stored for various dimensions N

with a fixed number of measurements M per scan.

N \ M 1 2 3 4 5 6 7 8 9 10

2 1 1 1 1 1 1 1 1 1 1
3 1 1.33 1.50 1.60 1.67 1.71 1.75 1.78 1.80 1.82
4 1 1.71 2.08 2.29 2.42 2.51 2.58 2.63 2.67 2.70
5 1 2.13 2.70 3.01 3.21 3.34 3.43 3.50 3.56 3.60
6 1 2.58 3.35 3.75 4.00 4.17 4.29 4.38 4.44 4.50
7 1 3.05 4.01 4.50 4.80 5.00 5.14 5.25 5.33 5.40
8 1 3.53 4.67 5.25 5.60 5.83 6.00 6.13 6.22 6.30
9 1 4.02 5.33 6.00 6.40 6.67 6.86 7.00 7.11 7.20

10 1 4.51 6.00 6.75 7.20 7.50 7.71 7.88 8.00 8.10

Table 6. Ratio of number of Kalman filters calculated for full set (per Table 3) vs
reduced set (per Table 5). In both sets, N is the dimensional size, and there

is a fixed number of measurements M per scan.

The storage of previously calculated costs c and Kalman filter outputs is used in

this version of MDA Algorithm I and in the suboptimal but faster Algorithm II.

 22

4. Linear Programming Overview

Once the costs c are obtained, based on an enumeration of N-tuple measurement-

to-track paths along a batch, the assignment of these costs-to-track can be performed via

a variety of methods. In [21], an efficient near-optimal algorithm is developed using a

relaxation algorithm based on Lagrangian multipliers, with a modified Auction algorithm

[29]. Other efficient methods are also currently available for solving the objective

function for global constraint optimization problems [2]. Some of the other solutions

were mentioned in Chapter I in the review of batch-oriented MTT algorithms. There is

also a variety of global optimization solvers commercially available or as open source

software packages. As part of this study, an open source package called LP_SOLVE [2],

[3] is used to perform the linear global constraint optimization. LP_SOLVE utilizes a

mixed integer linear programming relaxation technique via the primal-dual method.

Linear programming (LP) was originally developed by Dantzig [30] in 1947 and was

initially used by the U.S. Air Force. Currently, LP is used in a variety of fields to solve

the linear global constraint optimization problem. LP sets up the optimization

formulation in the form of Ax = B, where A contains the associated N-tuple costs c, x

contains the binary decision variable ρ, and B contains the associated constraint terms as

outlined in this study. A detailed description of LP is beyond the scope of this thesis, but

the reader is referred to several texts [30], [31], [32] on this well-researched and much-

applied method. The ND assignment operation is performed in the LP_Assign module of

Figure 1, and objective formulation is outlined in the next section.

5. ND Assignment

The ND assignment refers to a batch length of (N − 1) scans where the first

dimension represents the prior state estimates and covariance of a given track. For

example, a 16D assignment, or a batch length of 15 scans, is processed for each target.

The ND assignment formulation follows Equations (25) and (26).

 23

The objective function is given by

1 2

1 2 1 2
1 2

1 1 2 2

min
n

i i i i i in ni i in
n n

mm m

i u i u i u

c
ρ

ρ
= = =
    



 , (25)

where c is the N-tuple Kalman filter negative log likelihood, subject to the set of

constraints defined as

32

1 2
2 2 3 3

1
n

i i in
n n

m mm

i u i u i u

ρ
= = =

=   
 for

1 11, 2,i m= 

31

1 2
1 1 3 3

1
n

i i in
n n

m mm

i u i u i u

ρ
= = =

=  
 for

2 21, 2,i m=  (26)

 

1 2

1 2
1 1 2 2 1

1

1
n

i i in
n n

mm m

i u i u i u

ρ
−

−

= = =

=   
 for 1, 2,

n ni m=  ,

where mn is the number of measurements for scan n from 1 to (N − 1). The measurement

index i ranges from un to mn, where un = 0, and n is the scan index. Note that (un = 0) is

the missing measurement. The values of
niiic 21
 are the N-tuple costs. These costs are

the cumulative Kalman filter negative log likelihoods for the batch, Λ , as obtained in the

GenCost function. The costs are minimized in Equation (25) subject to the constraints in

Equation (26). The constraints impose the requirement that at most one measurement is

associated with a track per scan in a batch and multiple tracks can be associated with the

missing measurement at the same scan. In other words, each measurement-to-track

assignment is exclusive per scan in the batch. It is noted in [27] that the actual

measurement-to-track assignment is a very efficient process and only takes 5% of the

computational resources for the algorithm. Once the measurement-to-track assignments

are obtained, the next step, as shown in Figure 1, is to update the track’s state estimate via

a standard Kalman filter as described in the next section.

 24

6. Kalman Filter Update

Once the measurement-to-track assignment is performed, a Kalman filter is used

to update the state matrix for the next scan ts. The filter process is performed via the

Kalman filter state space Equations (5) through (13), calculated for each track at current

scan ts with measurement z(t1) obtained for the track via the (LP_Assign) assignment

function for the first scan of the batch. Note that, in Equations (5) through (13), the scan

index n represents the scan index in a batch, which is replaced in this step with s, the scan

epoch index for the total number of scans.

Note that an assignment of a missing measurement only performs the Kalman

time update, Equations (5) through (8). The filter is processed, and the cycle repeats for

the next scan of data according to Figure 1.

D. ALGORITHM II: A FASTER, SUBOPTIMAL VERSION VIA 2D-ND MDA

1. Overview of Algorithm II

The primary goal of this research is to extend the batch length size of the tracker

with the premise that it will aid in the long-duration target crossings problem. In

Algorithm I, it is shown that by increasing the dimensional size, the number of Kalman

filters to process the cost evaluations increases exponentially. In [27], it is noted that

even though the assignment function of the MDA is the most important part of the

algorithm, it accounts for only 5% of the computational resources. About 95% of the

computational load is due to the generation of the cost evaluations, to form the objective

function, given by Equation (25). In Algorithm I, the number of cost evaluations

remained the optimal size with a full enumeration of all N-tuple pairwise measurement-

to-track decisions along the batch were calculated. In [27], a fast MDA-style algorithm is

developed by using a clustering process to reduce the number of cost evaluations. This is

a type of gating procedure along a batch based on a clustering approach. As part of this

research, in Algorithm II, a method is proposed to reduce the cost evaluations by gating

the tracks and identifying single target and multiple target groupings. The tracking of

these groups is performed with either a single scan (2D single-target) or multiscan (ND

 25

multitarget) multidimensional assignment. An overview of Algorithm II of MDA is

shown in Figure 4. When multiple tracks are within a gate, the algorithm reduces the

number of cost evaluations by employing a filtering of the measurements by a 2D LP

assignment via a forward-looking filter along the batch. These filtered measurements are

reprocessed by an ND LP assignment MDA. When tracks are outside the vicinity of any

other tracks—basically, a single target track—the algorithm reverts to a 2D algorithm as

outlined in Algorithm I, with N equal to 2.

The 2D assignment (single-target mode) is very efficient due to this linearity in

the number of measurements to tracks. For example, if 400 scans were processed with

two tracks and three measurements per scan, a total of 2400 cost evaluations or Kalman

filters are computed for this scenario. In the 4D example given in the Algorithm I section

of the thesis, with two tracks, three measurements per scan, with 400 scans to be

processed, a total of 21,600 cost decisions or 31,200 Kalman filters need to be calculated

for this example. In this case, the 4D version is 13 times more expensive than the 2D

version with three measurements per scan. This savings is the rationale for using the 2D

LP when in single target mode. When there is no contention among close-by tracks,

which is the single target case, a 2D assignment is a cost-efficient tracker. It is also noted

that the 2D assignment degrades in performance as the clutter level increases. In

simulation, the 2D assignment also tended to exhibit the track repulsion behavior for

long-duration crossing targets more than versions with longer batch lengths.

It is emphasized that in the multiscan, multitarget (ND) mode in Algorithm II, the

Kalman filter processes the entire batch and then skips forward to process the next batch

of data out of the gate. This further increases the speed of the algorithm over the

processing from scan to scan described for Algorithm I. This part of the processing is

described in Section D.5 for Algorithm II.

 26

Figure 4. Overview of Algorithm II: 2D-ND LP MDA tracking algorithm.

(Data received)
Measurements per

scan for a batch (N − 1)
 in time forward

Generate 2D Costs
for each track for

every measurement

(N − 1) scans forward

Get
measurement to

track assignment via
2D linear programming

relaxation for (N − 1) scans
forward

Update states via
Kalman filter for (N − 1)

scans forward

Process
next scan

GenCost 2D FWD

2DLP_Assign_FWD

Generate costs
for each track for

every extracted measurement
per scan in the batch

Get track to
 measurement assignment

via
linear programming

relaxation

GenCost_ND

ND_LP_Assign

Generate costs
for each track for

every measurement
for single scan

Get measurement to
 track assignment via

2D linear programming
relaxation

GenCost_2D

2DLP_Assign

Are tracks
Within
Gate?

YesNo

Update states via
Kalman filter for current

scan

Process next scan

Initialization for new
tracks

Update states via
Kalman filter

for current scan

 27

2. Track Initialization

The track initialization functionality is the same as described in Algorithm I. This

function is performed at the first scan, and states are projected forward for the next scan.

3. Track Gating

When multiple tracks are within a gate, there are two possible outcomes from

Algorithm II. When the tracks are in gate proximity, the 2D-ND LP tracker (multitarget

tracking) is employed to process the multiple tracks. When the tracks are separated,

outside any tracker gates, the 2D LP tracker (single-target tracking) is performed. The

gating procedure can be performed either spatially or temporally. For example, a spatial

gating can be performed between multiple tracks using the Kalman filter negative log

likelihoods described in Algorithm I with an appropriately set gating threshold. In this

research, a time-dependent gating procedure is used. Because the goal of this study is the

long-duration crossing, a time window is identified in which the 2D-ND LP tracker is

processed. The 2D LP tracker is used for all scans before and after the window, which

begins with time scan tn_start and ends with time scan tn_end.

The pseudo code for the 2D LP tracker (single-target case) is as follows:

if _n n startt t< or _n n endt t> .

The pseudo code for the 2D-ND LP tracker (multitarget case) is as follows:

else (_n n startt t≥ and _n n endt t≤).

A diagram of the time-dependent track gating is given in Figure 5. This

methodology is used for consistency in the simulated results given in Chapter III. A

spatial gate can be easily interchanged as part of the gating procedure within this

paradigm. Tracks that are about to cross can also be identified in time via extrapolation

using a linear least squares fit along the track or another procedure. This research uses

fixed time scans for switching between the two paths, as shown in the flow diagram in

Figure 4.

 28

Figure 5. Track gate switching is performed at time scans tn start and tn end. The 2D LP
tracker (single-target, single-scan) is used prior to tn_start and after tn_end. The

2D-ND LP tracker (multitarget, batch) is used between time scans tn_start and tn_end.

4. 2D LP Assignment Single Scan

When tracks are outside of a gate, a 2D LP is used to update the state estimates

and the next scan is processed. The costs are calculated as in Algorithm I outlined in the

Cost Generation section. The 2D assignment is performed as outlined in the ND

assignment section of Algorithm I with N equal to 2. The modules GenCost_2D and

2DLP_Assign shown in Figure 4 are special situations of the generic GenCost and

LP_Assign modules as described in Algorithm I. Note that in Tables 2 and 5 that the

number of cost evaluations and/or Kalman filters to process is linear with the number of

measurements M (including missing measurement) in the scan for the 2D assignment.

5. 2D-ND LP Assignment Multiscan

When tracks are inside of a gate, a 2D-ND LP is processed. The modules shown

in Figure 4 labeled GenCost_2D_FWD, 2DLP_Assign_FWD, GenCost_ND, and

ND_LP_Assign account for the main processing chain of this algorithm.

0 50 100 150 2 0 250 300 350 400 450 5 0
-40

-30

-20

-10

0

10

20

30

40

50

60

po
si

tio
n

t ime(scans)

Single Target (2D) Multitarget (2D-ND)

_n startt _n endt

 29

In the GenCost_2D_FWD, and 2DLP_Assign_FWD, a 2D LP filter is run (N − 1)

scans forward in time. This process is similar to the section in Algorithm II for the 2D

LP Assignment for a single scan. The measurements that were assigned to the track are

saved to be reprocessed by ND LP assignment. During the assignment process, it is

noted that a track received an actual measurement or a missing measurement. By

following this step, the number of measurements nm processed by the ND Assignment

becomes equal to or less than the number of tracks L . In most circumstances, the number of

tracks is less than the number of measurements. Note that using the 2D assignment as a filter,

there are certain advantages especially when processing in low clutter. First, if all the tracks

are assigned an actual measurement on a particular scan in the batch, this is duly noted and

the missing measurement need not be processed for that scan. Second, if none of the tracks is

assigned a real measurement, then only the missing measurement needs to be processed for

the scan. Third, as the clutter level λ increases, the Kalman filter calculation costs are

absorbed by the 2D assignment, which is linear with the number of measurements. The

filtered data sent to the ND Assignment are always less than or equal to the number of tracks

no matter how large the clutter level. This property has benefits and disadvantages. In dense

clutter, this part of the algorithm is very fast but performance also degrades. Note that the 2D

assignment process discussed in this section is only used as a filtering process. The state

estimates derived from this process are not used at the end of each batch. The 2D assignment

filters the batch of data and forms a new filtered batch of data to be reprocessed by the ND

assignment.

In the GenCost_ND, and ND_LP_Assign sections, these modules are similar to

the GenCost and LP_Assign shown in Figure 1 of Algorithm I. The difference is in

Algorithm I, the missing measurement is accounted on every scan of the batch. In the

ND assignment in Algorithm II, the 2D assignment provides an index if a missing

measurement or a real measurement is processed for a particular scan. Therefore, the

missing measurement need not be processed for every scan in the batch. By filtering with

the 2D assignment, the number of 2D LP filtered measurements ln, to process with the

ND assignment is less than or equal to the number of tracks L . The ND assignment

formulation for Algorithm II has the same set of Equations (25) and (26) as in Algorithm I.

 30

The objective function in Equation (25) is minimized subject to the constraints in

Equation (26). The binary value nu is the measurement index value filtered by the 2D LP

forward filter. If nu equals 0, a missing measurement is processed; otherwise, the index is

1, representing the first real measurement. The value nm equal to ln, is the number of 2D

LP filtered measurements for scan n from 1 to (N − 1). The measurement index i ranges

from 0—the missing measurement—to (nm = ln), where ln is the number of

measurements filtered by the 2D forward filter per scan, and n is the scan index.

The maximum number of costs calculated per track for the 2D-ND LP MDA for a

fixed number of measurements per scan in a batch is given by Equation (27):

Number of costs (c) = 1(1) NM N L −− + , (27)

where M is the number of measurements per scan including the missing measurement,

(N − 1) is the batch length, and L is the number of tracks. The total number of costs is

given by Equation (28):

Total number of costs = 1((1))NM N L L−− + . (28)

The total number of Kalman filters needed to process a single track in a batch is

given by Equation (29):

Number of KF in reduced set =
1

1

(1)
N

n

n

M N L
−

=

− + ,

or (29)

Number of KF in reduced set = (1)
1

NL L
M N

L

−− +
−

,

where L > 1 in the generation function.

The generic equations used to calculate the number of costs and the number of

Kalman filters in the reduced set for any number of measurements in a batch for a single

track are given as Equations (30) and (31), respectively.

Number of costs (c) =
11

1 1

NN

n n
n n

m l
−−

= =

+ ∏ , (30)

 31

Number of reduced KF =
11

1 2 1

kN N

n n
n k n

m l
−−

= = =

+ ∏ , (31)

where nl is the number of 2D LP extracted measurements for scan n from 1 to (1k −)

and k is the dimensional assignment from 2 to N. Note that nl L≤ where L is the

number of tracks for any scan n .

6. Kalman Filter Update Multiscan

A Kalman filter update is performed for every scan in the batch based on the

measurements obtained from the ND assignment. Note that this is a different operation

than Algorithm I, where a sliding batch is employed and only the first value in the batch

is used to update the Kalman filter. In Algorithm II, the Kalman filter processes the

entire batch, and skips forward to process the next batch of data until the track is out of

the gate. The Kalman filter follows Equations (5) through (13) for scan index st .

7. Example

As an example, consider a case with 500 scans, two tracks (2L =), and three

measurements including the missing measurement (M = 3) that uses a 6D assignment

(N = 6). The tracks are separated during the first 200 scans, crossing during the next 100

scans, and separated again during the last 200 scans. A diagram of this example is shown

in Figure 6. Using Algorithm I, the total number of Kalman filters (KF) for the separated

tracks, i.e., for 400 scans, in this case is calculated as Num_KF_M_N ∗ L ∗ Num_scan,

where Num_KF_M_N is the number of KFs from Table 5 for given values of M and N,

and Num_scan is 2 ∗ 200 scans, or 400. Thus, the total number of KFs for the separated

tracks is 363 ∗ 2 ∗ 400, or 290,400 KF. From Table 2, the total number of cost

evaluations is calculated as cost_M_N, where cost_M_N is the number of costs from

Table 2 for given values of M and N. Thus, cost_M_N = c ∗ L ∗ Num_scan = 243 ∗ 2 ∗

400, or 194,400 cost evaluations.

 32

Figure 6. Example of 6D assignment for two-target case with 500 scans
and target crossings for 100 scans.

Using Algorithm II for the single-target section, where tracks are outside the gate

of Figure 4 (i.e., separated), the total number of KFs for the separated tracks is calculated

as Num_KF_2D_M_N ∗ L ∗ Num_scan, where Num_KF_2D_M_N is the number of KFs

from Table 5 for given values of M and N, and Num_scan is 400. Thus, the total number

of KFs for the separated tracks using Algorithm II is 3 ∗ 2 ∗ 400, or 2400 KFs. From

Table 2, the total number of cost evaluations is calculated as cost_2D_M_N, where

cost_2D_M_N is the number of costs from Table 2 for given values of M and N. Thus,

cost_2D_M_N = c ∗ L ∗ Num_scan = is 3 ∗ 2 ∗ 400, or 2400 cost evaluations. Thus,

based on the ratio of the total number of KFs, Algorithm II is 121 times faster than

Algorithm I for this case.

Using Algorithm I for the multitarget case, the tracks are within a gate between

scans 200 and 300, i.e., Num_scan = 100. From Table 5, the number of Kalman filters to

process for Algorithm I is Num_KF_M_N ∗ L ∗ Num_scan = 363 ∗ 2 ∗ 100, or 72,600

0 50 100 15 200 250 300 350 400 450 500
-40

-30

-20

0

0

10

20

30

40

50

60

time (scans)

po
si

tio
n

Example with Batch Length = 5(6D)

Process scans
200 to 205

Process
next batch

Project state
estimates for
next scan

Scan 200

Time scans

Process 2D
assignment

Process 2D
assignment

Scan 300

(Batch Length = 1)
1 5 0 2 0 0 2 5 0 3 0 0 3 5 0

- 6

-

- 2

0

2

6

t i m e (s c a n s)
po

s
tio

n

 33 (34 blank)

KF. From Table 2, the total number of cost evaluations cost_M_N is calculated as c ∗ L ∗

Num_scan = 243 ∗ 2 ∗ 100, or 48,600 cost evaluations.

Using Algorithm II for the multitarget case requires two steps to calculate the

number of Kalman filters. The 2D LP function is used for forward filtering, and then the

ND LP function is used to calculate the cost based on the 2D LP filtered output. Thus,

the total number of KFs for the multitarget case = (Num_KF_2D_M_N ∗ L * Num_scan)

+ (Num_KF_6D_L_N ∗ L ∗ Num_scan/(N − 1)) = (3 ∗ 2 ∗ 100) + (62 ∗ 2 ∗ 20), or 3080

KFs. Thus, based on the ratio of the total number of KFs, Algorithm II is about 23 times

faster than Algorithm I for the multitarget case.

From Table 2, the total number of cost evaluations c is calculated as

(cost_2D_M_N ∗ L ∗ Num_scan) + (cost_6D_L_N ∗ L ∗ Num_scan/(N − 1)) = (3 ∗ 2 ∗

100) + (32 ∗ 2 ∗ 20) = 1880 cost evaluations. The number of cost evaluations is reduced

by more than 25 times by using Algorithm II instead of Algorithm I. It is important to

note that much of the savings is attributed to the elimination of the sliding batch in

Algorithm II and the 2D LP data filtering that reduces the number of measurements per

scan from M to the number of tracks L. The 2D LP for the single-target section of the

algorithm provides most of the computational savings. The comparison of costs and

number of reduced Kalman filters between Algorithm I and Algorithm II is provided in

Table 7.

Table 7. Comparison of Algorithm I and II functions for calculating the number of
cost evaluations and the number of Kalman filters in a reduced set for a

single track and a batch length (N − 1), where m is the varying number of
measurements for scan n from 1 to (k − 1), and k is the dimensional

assignment from 2 to N. The value ln is the number of 2D LP extracted
measurements for scan n from 1 to (k − 1), and k is the dimensional

assignment from 2 to N. Note that, for any scan n, ln ≤ L where L is the
number of tracks.

 Algorithm I: ND LP Algorithm II: 2D-ND LP

No. of cost evaluations c
1

1

N

n
n

m
−

=
∏

11

1 1

NN

n n
n n

m l
−−

= =

+ ∏

No. of reduced KF
1

2 1

kN

n
k n

m
−

= =
∏

11

1 2 1

kN N

n n
n k n

m l
−−

= = =

+ ∏

 35

III. SIMULATION AND RESULTS

The following simulation is based on a study conducted by Willet et al. [1] for

various MHT batch-style algorithms for a passive sonar line array. The results from [1]

are not reproduced as part of this thesis. Figure 7 shows a sample case with two targets

crossing in a cluttered environment where the crossing occurs over 100 scans. The solid

green lines represent the true target trajectories. The zoom view on the right shows the

difficulty a tracker would have in interpreting the data during the long-duration crossing

of 100 scans. The goal of this study is to extend the batch length, using MDA or another

method, to beyond the length of the crossing. The objective for the tracking algorithm is

to maintain track on all targets through the crossing. Because of the exponential nature of

MDA and the current state of computing resources, it is impractical to develop a tracker

with acceptable runtime performance for batch lengths of 100 scans or more without

major pruning of the cost evaluations or the use of other suboptimal techniques.

Algorithm II provides a more efficient method for extending the batch length while still

adhering to the basic concepts of MDA.

0 100 200 300 400 500
-40

-30

-20

-10

0

10

20

30

40

50

60

po
si

tio
n

time(scans)
200 220 240 260 280 300

-5

-4

-3

-2

-1

0

1

2

3

4

5

po
si

tio
n

time(scans)

Figure 7. Sample simulated case with two targets in linear straight-line motion through
a 100-scan crossing in a cluttered environment, λ = 0.01 (left). In a zoom view in
the area of the target crossing, or approximately 100 time scans (right), the solid

green lines represent the true target trajectories.

 36

In all of the simulations, the PD = 70%, and σr = 2, where PD is the probability of

detection, and σr is the measurement error standard deviation. Thus, when σr = 2, the

targets are within 2σr of one another during the 100 scans of crossing. The Kalman

filter’s initial process noise variance 2

0f
σ equals 0.0625. In these simulations, the value

for σq, the process noise standard deviation for the Kalman filter, is set to 0.0005, which

corresponds to a final position standard deviation of ()()() 2/16/121 ++ nnnT qσ = 3.23.

This value is important because it determines the stiffness of the track and/or the

randomness of the simulated measurements as input to the tracker. λ = 0.0, 0.01, 0.02,

and 0.05 are the clutter density levels for the trials. For instance, a clutter density of 0.01

corresponds to a single clutter measurement in a linear space of a 100 points. The

negative Kalman filter likelihood function’s clutter density parameter eλ in Equation (14)

is set at 0.01 for all cases. There were 100 trials conducted for each value of the clutter

density level λ . Each trial consisted of 500 scans of data with two crossing targets. The

tracks were initiated in all scenarios at 10 and −10 with zero velocity. Figure 8 shows

sample clutter levels and track crossing scenarios used as input and output for the test

results. The results from the 100 trials actually included five track crossing scenarios—

when all tracks are tracking (both tracking), both tracks bounce (switched), the tracks

coalesce (coalesced), only a single track is tracking (one only), and none of the tracks are

tracking the target (neither). The coalesced outcome seldom occurred for the MDA

algorithm—only for the high clutter case. This reflects the constraints imposed as part of

the discrete optimization problem. The thin green and blue lines represent the truth of the

target paths. The thicker solid green and blue lines represent the tracker outputs.

 37

Figure 8. Sample clutter levels and track crossing scenarios used as input and output to
obtain test results: zero clutter scenario with both tracks on target (top left), a

clutter level of 0.01 and only one track on target (top right), a clutter level of 0.02
and both tracks bounce (bottom left), and a clutter level of 0.05 and neither track

is on target (bottom right).

Figure 9 shows the MDA results of using Algorithm I, a typical sliding batch

implementation of the MDA-style tracker, with batch lengths (N − 1) of 1, 2, and 3

(corresponding to 2D, 3D, and 4D implementations of MDA). Past the 4D mark, the

number of calculations to form the cost matrix is large (see Table 5). For 4D or greater, it

is not possible to obtain the simulation runs in a reasonable length of time. The results

show that with no clutter (λ = 0.0), the 2D assignment tracks both targets in more than

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

40

60
Measurements and Ideal Tracks (Trial 1)

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

40

60

TIME

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

40

60
Measurements and Ideal Tracks (Trial 159)

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

40

60

TIME

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

40

60
Measurements and Ideal Tracks (Trial 288)

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

40

60

TIME

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

40

60
Measurements and Ideal Tracks (Tr al 319)

0 50 100 150 200 250 300 350 400 450
-40

-20

0

20

40

60

TIME

λ = 0.0 and both tracking λ = 0.01 and only one tracking

λ = 0.05 and neither tracking λ = 0.02 and tracks switched

+

Truth Target 1
Truth Target 2

Tracker 2
Tracker 1

Measurements

 38

50% of the cases. The exact value is 56%, with 95% confidence intervals between

46.27% and 65.73%, based on Bernoulli trials. For batch lengths of 2 and 3, Algorithm I

tracks correctly more than 70% of the time in no clutter. For a batch length of 2, 72% of

the crossings are tracked correctly, with 95% confidence intervals between 63.2% and

80.8%. For a batch length of 3, the correct crossings increase to 75%, with 95%

confidence intervals between 66.51% and 83.49%. When λ = 0.01, the correct tracking

performance degrades to less than 30% of the time for all batch lengths. Table 8 gives

the percentage of correct crossings (i.e., both targets tracked through the crossing) in the

Algorithm I results, with 95% confidence intervals, for batch lengths of 1, 2, and 3 with

λ = 0.0, 0.01, 0.02, and 0.05 for each batch length. Increasing the batch length from 2 to

3 does improve the performance slightly for λ = 0.01. As the clutter level is increased,

the algorithm performance decreases as expected.

1 2 3 1 2 3 1 2 3 1 2 3
0

20

40

60

80

100

120

140

Batch Length (N-1)

p
e

rc
e

n
ta

g
e

both track ing
switched
coalesced
one only
neither

Figure 9. Results from Algorithm I: ND LP MDA version for straight-line model,
σq = 0.0005. For each group of bars, the three numbers at the bottom (1, 2, 3)
represent the batch length (N − 1), with 100 trials per bar. The groups, left to

right, represent clutter density parameter λ at 0.0, 0.01, 0.02, 0.05.

 39

Batch
Length λ

Correct
Crossings

(%)

95%
Lower
Bound

95%
Upper
Bound

1 0 56 46.27 65.73
1 0.01 1 0 2.95
1 0.02 0 0 0
1 0.05 2 0 4.74
2 0 72 63.2 80.8
2 0.01 26 17.4 34.6
2 0.02 22 13.88 30.12
2 0.05 13 6.41 19.59
3 0 75 66.51 83.49
3 0.01 27 18.3 35.7
3 0.02 21 13.02 28.98
3 0.05 20 12.16 27.84

Table 8. Algorithm I correct track crossings (both targets are being tracked) in 100
trials if σq = 0.0005, with 95% confidence intervals. Batch lengths are 1, 2,

and 3 for λ = 0.0, 0.01, 0.02, and 0.05.

Because of the excessive time required to process batch lengths of a higher order

with Algorithm I, Algorithm II was developed to speed up the processing time by

combining the 2D and ND versions of the MDA algorithm. The 2D LP tracker is used

until the tracks are about to cross. In all cases, the crossing occurs at scan 200. The 2D

LP tracker is again used when the tracks exit the crossing at scan 305. As the track

crossing occurs, a 2D-ND LP tracker is used with various batch lengths. The results from

these trials are shown in Figure 10. For the value of σq = 0.0005, the algorithm performs

very well for batch lengths of 2 through 10, with 99% tracking of both targets in

moderate clutter (λ = 0.01).

Table 9 gives the percentage of correct crossings (both targets tracked through the

crossing) in the Algorithm II results, with 95% confidence intervals, where σq = 0.0005,

for batch lengths of 1, 2, 3, 5, and 10 with λ = 0.0, 0.01, 0.02, and 0.05 for each batch

length. The performance degrades with increasing clutter as expected.

 40

 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
0

20

40

60

80

100

120

140

Batch Length (N-1)

p
e

rc
e

n
ta

g
e

both track ing
switched
coalesced
one only
neither

Figure 10. Results from Algorithm II: 2D-ND MDA fast version, σq = 0.0005. For each
group of bars, the five numbers at the bottom (1, 2, 3, 5, 10) represent the batch
length (N − 1), with 100 trials per bar. The groups, left to right, represent the

clutter density parameter λ at 0.0, 0.01, 0.02, 0.05.

 41

Batch
Length λ

Correct
Crossings

(%)

95%
Lower
Bound

95%
Upper
Bound

1 0 56 46.27 65.73
1 0.01 1 0 2.95
1 0.02 0 0 0
1 0.05 2 0 4.74
2 0 100 100 100
2 0.01 99 97.05 100
2 0.02 95 90.73 99.27
2 0.05 52 42.21 61.79
3 0 100 100 100
3 0.01 99 97.05 100
3 0.02 95 90.73 99.27
3 0.05 52 42.21 61.79
5 0 100 100 100
5 0.01 99 97.05 100
5 0.02 95 90.73 99.27
5 0.05 54 44.23 63.77
10 0 100 100 100
10 0.01 99 97.05 100
10 0.02 95 90.73 99.27
10 0.05 52 42.21 61.79

Table 9. Algorithm II correct track crossings (both targets are being tracked) in 100
trials if σq = 0.0005, with 95% confidence intervals. Batch lengths are 1, 2,

3, 5, and 10 for λ = 0.0, 0.01, 0.02, and 0.05.

Because the Algorithm II results were good with σq set to 0.0005, σq was

increased to 0.002 for the four clutter levels used in the prior trials. These results are

shown in Figure 11 for batch lengths of 1, 2, 3, 5, 10, and 15. The results indicate that

the Algorithm II tracking performance is better than 90% in terms of correct crossings for

batch lengths greater than 1 with no clutter.

Table 10 gives the percentage of correct crossings (both targets tracked through

the crossing) in the Algorithm II results, with 95% confidence intervals, where

σq = 0.002, for batch lengths of 1, 2, 3, 5, 10, and 15 with λ = 0.0, 0.01, 0.02, and 0.05 for

each batch length. As the clutter level increases, the tracking performance decreases

proportionately for batch lengths greater than 1. At each level of clutter above λ = 0.0,

the tracking performance increases as the batch length increases. With σq = 0.002, the

 42

trend in the results for clutter levels λ of 0.01, 0.02, and 0.05 indicates that increasing the

batch length leads to a higher probability of maintaining track for long-duration crossings

of 100 scans.

 1 2 3 5 1015 1 2 3 51015 1 2 3 5 1015 1 2 3 51015
0

20

40

60

80

100

120

140

Batch Length (N-1)

p
e

rc
e

n
ta

g
e

both track ing
switched
coalesced
one only
neither

Figure 11. Results from Algorithm II: 2D-ND MDA, σq = 0.002. For each group of
bars, the six numbers at the bottom (1, 2, 3, 5, 10, 15) represent the batch length

(N − 1), with 100 trials per bar. The groups, left to right, represent clutter density
parameter λ at 0.0, 0.01, 0.02, 0.05.

 43

Batch
Length λ

Correct
Crossings

(%)

95%
Lower
Bound

95%
Upper
Bound

1 0 0 0 0
1 0.01 0 0 0
1 0.02 0 0 0
1 0.05 0 0 0
2 0 98 95.26 100
2 0.01 63 53.54 72.46
2 0.02 44 34.27 53.73
2 0.05 37 27.54 46.46
3 0 98 95.26 100
3 0.01 64 54.59 73.41
3 0.02 49 39.2 58.8
3 0.05 34 24.72 43.28
5 0 98 95.26 100
5 0.01 63 53.54 72.46
5 0.02 40 30.4 49.6
5 0.05 35 25.65 44.35
10 0 97 93.66 100
10 0.01 69 59.94 78.06
10 0.02 51 41.2 60.8
10 0.05 41 31.36 50.64
15 0 98 95.26 100
15 0.01 72 63.2 80.8
15 0.02 56 46.27 65.73
15 0.05 44 34.27 53.73

Table 10. Algorithm II correct track crossings (both targets are being tracked) in 100
trials if σq = 0.002, with 95% confidence intervals. Batch lengths are 1, 2,

3, 5, 10, and 15 for λ = 0.0, 0.01, 0.02, and 0.05.

The appendix presents the normalized estimation error squared (NEES) and the

root-mean-square error (RMSE) [25, pp. 234–235] for the average when both targets are

being tracked correctly through the long-duration crossing for each of the test cases as a

function of batch length and clutter density λ. The 95% confidence bounds for the two

dimensions (position and velocity) are plotted and labeled on all of the NEES plots. In

all cases, the 95% chi square distribution lower bound and upper bound are 0.0506 and

7.3778, respectively.

Notice that the tracker performance degrades with increasing clutter density λ in

both the NEES plots and RMSE curves for both Algorithms I and II and also in the case

where σq is increased. This effect is due to the nature of the MDA and other non-

 44

Bayesian association algorithms, such as nearest neighbor, strongest neighbor, and track

split approaches [13, pp. 119–141], where a Kalman filter is used to estimate the state

vector. A Kalman filter’s estimate does not update its covariance update to measure its

uncertainty as to whether the associated assignment originated from the target or was

associated to clutter.

In the MDA batch approach, all measurement-to-track assignments are considered

along the batch, but based on the constraints imposed, the maximum likelihood set of

measurements is used to update the Kalman filters associated to the prior tracks. In the

simulation being studied here, two tracks are initiated, and because a standard Kalman

filter is utilized for state estimation, any association errors due to increasing clutter will

detrimentally affect the tracker performance. Longer batch lengths for Algorithm I

should improve the performance as clutter increases because the measurement-to-track

assignment is exhaustive along the batch and also a longer time frame would be available

to choose the correct path from the hypothesis tree. In Algorithm II, even though greater

batch lengths are more feasible, the approach is considered suboptimal because a 2D

forward filter is used to prune the measurement set. Any errors in the 2D association

process will influence the subsequent ND assignment process and affect the tracker’s

results.

In Bayesian association algorithms, such as PDA and MHT, an exhaustive set of

probabilities are calculated for every measurement-to-track pair. In PDA-style

algorithms [13, pp. 119–141], the measurement origin uncertainty is integrated as part of

the tracking filter, and the covariance estimate is duly updated to properly measure the

consistency of a track. In MHT style algorithms [11], [12], although a Kalman filter is

used to estimate the state vector, the initialization of tracks is incorporated as part of the

tracking function, and every possible hypothesis is calculated for all scans in time,

including the possibility that a measurement originated from a new target. This is

considered an optimal approach.

 45 (46 blank)

IV. CONCLUSIONS

This study investigated two versions of a batch-oriented, MDA tracking algorithm

to examine target crossings on the order of 100 scans in duration as tracked by a passive

sonar line array. Many of the computational load issues in the generation and evaluation

of the costs were identified to form the objective function. Linear programming

relaxation was used to solve the assignment problem. A suboptimal but faster version of

the ND assignment was developed to observe the effect of increased batch length on

tracking through crossings. Batch lengths of up to 15 scans, or 16D assignment, were

developed and tested on data with various levels of clutter for the suboptimal version.

The two algorithms were tested via 100-trial Monte Carlo simulations.

Algorithm I, the optimal version, was tested up to the 4D assignment case. The

results showed track repulsion behavior dominating correct tracking through crossings,

which was achieved in less than 30% of the trials; the tracks were switched more than

60% of the time in moderate clutter (λ = 0.01). With a batch length of two and λ = 0.01,

tracks were switched 70% of the time, with 95% confidence intervals between 61.02%

and 78.98%, based on Bernoulli trials. With a batch length of three and λ = 0.01, tracks

were switched 69% of the time, with 95% confidence intervals between 59.94% and

78.06%. Table 8 gives the percentage of correct track crossings for each case.

Algorithm II—suboptimal but faster—exhibited significantly better performance:

the percentage of correct track crossings exceeded 99% for batch lengths of two or more

and λ = 0.01, using the same process noise standard deviation as for Algorithm I. Table 9

gives the percentages observed in each case and the confidence intervals. When the

standard deviation was increased for the Algorithm II results, the trend showed the

number of correct track crossings generally increasing as batch length increased. A

definitive conclusion cannot be drawn on this point because the spread in the data, <10%,

is not statistically significant. The true effect of batch length on correct crossings can

only be verified by testing with batches much longer (i.e., (N − 1) > 100 scans) than the

15 scans used here.

 47

LIST OF REFERENCES

[1] P. Willett, T. E. Luginbuhl, and E. Giannopoulos, “MHT tracking for crossing
sonar targets,” presented at the SPIE Conference on Signal and Data Processing of
Small Targets, San Diego, CA, Aug. 2007, Paper No. 6699–47.

[2] J. Areta, Y. Bar-Shalom, M. Levedahl, and K. R. Pattipati, “Hierarchical track
association and fusion for a networked surveillance system,” J. of Advances in
Information Fusion, vol. 1, no. 2, Dec. 2006.

[3] M. Berkelaar, K. Eikland, and P. Notebaert, “Introduction to lp_solve 5.5.2.0,”
2004. Available: http://lpsolve.sourceforge.net/5.5/.

[4] V. J. Aidala and S. E. Hammel, “Utilization of modified polar coordinates for
bearings-only tracking,” IEEE Trans. Automatic Control, vol. AC-28, no. 3, Mar.
1983.

[5] S. C. Nardone, A. G. Lindgren, and K. F. Gong, “Fundamental properties and
performance of conventional bearings-only target motion analysis,” IEEE Trans.
Automatic Control, vol. AC-29, no. 9, Sep. 1984.

[6] K. C. Ho and Y. T. Chan, “An asymptotically unbiased estimator for bearings-only
and Doppler-bearing target motion analysis,” IEEE Trans. Signal Processing, vol.
54, no. 3, Mar. 2006.

[7] R. J. Urick, Principles of Underwater Sound, 3rd ed. New York: McGraw Hill,
1983, pp. 54–64.

[8] L. J. Ziomek, Fundamentals of Acoustic Field Theory and Space-Time Signal
Processing. Boca Raton, FL: CRC Press, Inc., 1995, pp. 589–594.

[9] R. L. Streit and T. E. Luginbuhl, “Probabilistic Multi-Hypothesis Tracking,” Naval
Undersea Warfare Center Division, Newport, RI, NUWC-NPT Tech. Rep. 10,428,
15 Feb. 1995.

[10] D. T. Dunham and R. G. Hutchins, “Tracking multiple targets in cluttered
environments with a probabilistic multi-hypothesis tracker,” in Proc. of SPIE
Annual International Symposium on AeroSense, Orlando, FL, vol. 3086,
pp. 284-295, Apr. 1997.

[11] D. Reid, “An algorithm for tracking multiple targets,” IEEE Trans. Automatic
Control, vol. AC-24, no. 6, Dec. 1979.

[12] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems.
Norwood, MA: Artech House, 1999, pp. 360–369.

 48

[13] Y. Bar-Shalom and X. R. Li, Multitarget-Multisensor Tracking: Principles and
Techniques. Storrs, CT: YBS Publishing, 1995.

[14] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association. San Diego,
CA: Academic Press, Inc., 1998, pp. 222–237.

[15] O. E. Drummond, “Multiple target tracking with multiple frame, probabilistic data
association,” in Proc. of SPIE Signal and Data Processing of Small Targets 1993,
Orlando, FL, vol. 1954, pp. 394–409, Apr. 1993.

[16] J. A. Roecker, “Multiple scan joint probabilistic data association,” IEEE Trans.
Aerosp. Electron. Syst., vol. 31, no. 3, Jul. 1995.

[17] S. Puranik and J. K. Tugnait, “Tracking of multiple maneuvering targets using
multiscan JPDA and IMM filtering,” IEEE Trans. Aerosp. Electron. Syst., vol. 43,
no. 1, Jan. 2007.

[18] R. J. Fitzgerald, “Track biases and coalescence with the probabilistic data
association,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-21, pp. 822–825, Nov.
1985.

[19] K. R. Pattipati, S. Deb, Y. Bar-Shalom, and R. B. Washburn, Jr, “A new relaxation
algorithm and passive sensor data association,” IEEE Trans. Automatic Control,
vol. 37, no. 2, Feb. 1992.

[20] A. B. Poore and N. Rijavec, “A Lagrangian relaxation algorithm for multi-
dimensional assignment problems arising from multi-target tracking,” SIAM J. of
Optimization, vol. 3, no. 3, pp. 645–663, Aug 1993.

[21] S. Deb, M. Yeddanapudi, K. Pattipati, and Y. Bar-Shalom, “A generalized S-D
assignment algorithm for multisensor-multitarget state estimation,” IEEE Trans. on
Aerospace and Electronic Systems, vol. 33, no. 2, Apr. 1997.

[22] X. Li, Z. Luo, K. M.Wong, and E.Bosse, “An interior point linear programming
approach to two-scan data association,” IEEE Trans. Aerosp. Electron. Syst., vol.
35, no. 2, Apr. 1999.

[23] C. L. Morefield, “Application of 0-1 Integer Programming to Multitarget Tracking
Problems, IEEE Trans. Automatic Control, vol. AC-22, pp. 302–311, Jun. 1977.

[24] H. Chen, T. Kirubarajan, and Y. Bar-Shalom, “Tracking of spawning targets with
multiple finite resolution sensors,” IEEE Trans. Aerosp. Electron. Syst., vol. 44,
no. 1, Jan. 2008.

[25] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to
Tracking and Navigation. New York, NY: John Wiley & Sons, Inc., 2001.

 49 (50 blank)

[26] Y. Bar-Shalom, S. S. Blackman, and R. J. Fitzgerald, “Dimensionless score
function for multiple hypothesis tracking,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 43, no. 1, Jan. 2007.

[27] M. R. Chummun, T. Kirubarajan, K. R. Pattipati, and Y.,Bar-Shalom, “Fast data
association using multidimensional assignment with clustering,” IEEE Trans.
Aerosp. Electron. Syst., vol. 37, no. 3, Jul. 2001.

[28] Wang. H., Kirubarajan. T., Bar-Shalom, Y., “Precision Large Scale Air Traffic
Surveillance using IMM/Assignment estimators,” IEEE Trans. Aerosp. Electron.
Syst., vol. 37, no. 3, Jan. 1999.

[29] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods. San
Diego, CA: Academic Press, 1982.

[30] G. B. Dantzig, Linear Programming and Extensions. Princeton, NJ: Princeton
University Press, 1963.

[31] S. I. Gass, Linear Programming Methods and Applications, 5th ed. New York:
McGraw-Hill, 1985.

[32] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization.
New York: John Wiley & Sons, Inc., 1988.

 51 (52 blank)

ACKNOWLEDGMENTS

I express my deepest gratitude to Dr. Tod E. Luginbuhl of the Naval Undersea

Warfare Center (NUWC) Division, Newport, for guiding me through this research and

the writing of this thesis. His valuable insights, contributed in both formal exchanges and

informal conversations, led to many of the significant developments in this work. Dr.

Luginbuhl and Dr. Peter K. Willett from the University of Connecticut were instrumental

in setting up the experimental problem that laid the foundation for my research. Dr.

Robert A. LaTourette, Dr. Christian G. Hempel, Mr. David J. Pistacchio, Dr. Evangelos

H. Giannopoulos, and Dr. Phillip L. Ainsleigh of NUWC Division Newport provided

constant encouragement and technical support. Dr. Mary H. Johnson, also of NUWC

Division Newport, provided a valuable and much appreciated critique. I appreciate the

financial support of this applied research project by the NUWC Division Newport In-

House Laboratory Independent Research and Independent Applied Research Program

review committee, chaired by Mr. Richard B. Philips and Dr. Anthony A. Ruffa. I am

also grateful to many other colleagues at NUWC who created a very nurturing and

stimulating environment in which to work. The Naval Postgraduate School provided an

excellent grounding in underwater acoustics, and Professor Daphne Kapolka, Chair,

Engineering Acoustics Academic Committee, assisted me in finding the right advisor and

in meeting all the thesis submission requirements. I thank Professor Robert G. Hutchins,

in the Department of Electrical and Computer Engineering, for his careful review of this

thesis. Most importantly, I thank my family for their loving encouragement and patience

throughout this effort.

 53

APPENDIX

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

95% Confidence Low er Bound

95% Confidence Upper Bound

A
vg

 N
E

E
S

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.05

Figure 12. Average NEES for Algorithm I: 2D LP, 0.0005qσ = .

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

A
vg

 R
M

S
E

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.05

Figure 13. Average RMSE for Algorithm I: 2D LP, 0.0005qσ = .

 54

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

95% Confidence Low er Bound

95% Confidence Upper Bound

A
vg

 N
E

E
S

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 14. Average NEES for Algorithm I: 3D LP, 0.0005qσ = .

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

A
vg

 R
M

S
E

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 15. Average RMSE for Algorithm I: 3D LP, 0.0005qσ = .

 55

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

95% Confidence Low er Bound

95% Confidence Upper Bound

A
vg

 N
E

E
S

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 16. Average NEES for Algorithm I: 4D LP, 0.0005qσ = .

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

A
vg

 R
M

S
E

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 17. Average RMSE for Algorithm I: 4D LP, 0.0005qσ = .

 56

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

95% Confidence Low er Bound

95% Confidence Upper Bound

A
vg

 N
E

E
S

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 18. Average NEES for Algorithm II: 2D-3D LP, 0.0005qσ = .

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

A
vg

 R
M

S
E

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 19. Average RMSE for Algorithm II: 2D-3D LP, 0.0005qσ = .

 57

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

95% Confidence Low er Bound

95% Confidence Upper Bound

A
vg

 N
E

E
S

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 20. Average NEES for Algorithm II: 2D-4D LP, 0.0005qσ = .

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

A
vg

 R
M

S
E

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 21. Average RMSE for Algorithm II: 2D-4D LP, 0.0005qσ = .

 58

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

95% Confidence Low er Bound

95% Confidence Upper Bound

A
vg

 N
E

E
S

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 22. Average NEES for Algorithm II: 2D-6D LP, 0.0005qσ = .

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

A
vg

 R
M

S
E

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 23. Average RMSE for Algorithm II: 2D-6D LP, 0.0005qσ = .

 59

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

95% Confidence Low er Bound

95% Confidence Upper Bound

A
vg

 N
E

E
S

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 24. Average NEES for Algorithm II: 2D-11D LP, 0.0005qσ = .

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

A
vg

 R
M

S
E

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 25. Average RMSE for Algorithm II: 2D-11D LP, 0.0005qσ = .

 60

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

95% Confidence Low er Bound

95% Confidence Upper Bound

A
vg

 N
E

E
S

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 26. Average NEES for Algorithm II: 2D-3D LP, 0.002qσ = .

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

A
vg

 R
M

S
E

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 27. Average RMSE for Algorithm II: 2D-3D LP, 0.002qσ = .

 61

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

95% Confidence Low er Bound

95% Confidence Upper Bound

A
vg

 N
E

E
S

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 28. Average NEES for Algorithm II: 2D-4D LP, 0.002qσ = .

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

A
vg

 R
M

S
E

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 29. Average RMSE for Algorithm II: 2D-4D LP, 0.002qσ = .

 62

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

95% Confidence Low er Bound

95% Confidence Upper Bound

A
vg

 N
E

E
S

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 30. Average NEES for Algorithm II: 2D-6D LP, 0.002qσ = .

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

A
vg

 R
M

S
E

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 31. Average RMSE for Algorithm II: 2D-6D LP, 0.002qσ = .

 63

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

95% Confidence Low er Bound

95% Confidence Upper Bound

A
vg

 N
E

E
S

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 32. Average NEES for Algorithm II: 2D-11D LP, 0.002qσ = .

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

A
vg

 R
M

S
E

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 33. Average RMSE for Algorithm II: 2D-11D LP, 0.002qσ = .

 64

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

95% Confidence Low er Bound

95% Confidence Upper Bound

A
vg

 N
E

E
S

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 34. Average NEES for Algorithm II: 2D-16D LP, 0.002qσ = .

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

A
vg

 R
M

S
E

time (Scans)

λ = 0.00

λ = 0.01

λ = 0.02

λ = 0.05

Figure 35. Average RMSE for Algorithm II: 2D-16D LP, 0.002qσ = .

INITIAL DISTRIBUTION LIST

Addressee No. of Copies

Naval Postgraduate School (D. Kapolka, R. Hutchins) 2

University of Connecticut (Y. Bar-Shalom, P. Willett) 2

Defense Technical Information Center 1

	COVER

	PREFACE

	ABSTRACT

	TABLE OF CONTENTS

	LIST OF ILLUSTRATIONS

	Figure 1. Overview of MDA tracking algorithm.
	Figure 2. Example of 4D assignment case cost mapping with two tracks and three measurements, including the missing measurement.
	Figure 3. Example of 4D cost tree mapping for Track 1.
	Figure 4. Overview of Algorithm II: 2D-ND LP MDA tracking algorithm.
	Figure 5. Track gate switching is performed at time scans tn_start and tn_end. The 2D LP tracker (single-target, single-scan) is used prior to tn_start and after tn_end. The 2D-ND LP tracker (multitarget, batch) is used between time scans tn_start and tn_end.

	Figure 6. Example of 6D assignment for two-target case with 500 scans and target crossings for 100 scans.

	Figure 7. Sample simulated case with two targets in linear straight-line motion througha 100-scan crossing in a cluttered environment, λ = 0.01. In a zoom view in the area of the target crossing, or approximately 100 time scans, the solid green lines represent the true target trajectories.

	Figure 8. Sample clutter levels and track crossing scenarios used as input and output to obtain test results: zero clutter scenario with both tracks on target, a clutter level of 0.01 and only one track on target, a clutter level of 0.02 and both tracks bounce, and a clutter level of 0.05 and neither track is on target.

	Figure 9. Results from Algorithm I: ND LP MDA version for straight-line model, σq = 0.0005. For each group of bars, the three numbers at the bottom (1, 2, 3) represent the batch length (N − 1), with 100 trials per bar. The groups, left to right, represent clutter density parameter λ at 0.0, 0.01, 0.02, 0.05.

	Figure 10. Results from Algorithm II: 2D-ND MDA fast version, σq = 0.0005. For each group of bars, the five numbers at the bottom (1, 2, 3, 5, 10) represent the batch length (N − 1), with 100 trials per bar. The groups, left to right, represent the clutter density parameter λ at 0.0, 0.01, 0.02, 0.05.

	Figure 11. Results from Algorithm II: 2D-ND MDA, σq = 0.002. For each group of bars, the six numbers at the bottom (1, 2, 3, 5, 10, 15) represent the batch length (N − 1), with 100 trials per bar. The groups, left to right, represent clutter density parameter λ at 0.0, 0.01, 0.02, 0.05.

	Figure 12. Average NEES for Algorithm I: 2D LP, σq = 0.0005.

	Figure 13. Average RMSE for Algorithm I: 2D LP, σq = 0.0005.
	Figure 14. Average NEES for Algorithm I: 3D LP, σq = 0.0005.

	Figure 15. Average RMSE for Algorithm I: 3D LP, σq = 0.0005.
	Figure 16. Average NEES for Algorithm I: 4D LP, σq = 0.0005.
	Figure 17. Average RMSE for Algorithm I: 4D LP, σq = 0.0005.
	Figure 18. Average NEES for Algorithm II: 2D-3D LP, σq = 0.0005.
	Figure 19. Average RMSE for Algorithm II: 2D-3D LP, σq = 0.0005.
	Figure 20. Average NEES for Algorithm II: 2D-4D LP, σq = 0.0005.
	Figure 21. Average RMSE for Algorithm II: 2D-4D LP, σq = 0.0005.
	Figure 22. Average NEES for Algorithm II: 2D-6D LP, σq = 0.0005.
	Figure 23. Average RMSE for Algorithm II: 2D-6D LP, σq = 0.0005.
	Figure 24. Average NEES for Algorithm II: 2D-11D LP, σq = 0.0005.
	Figure 25. Average RMSE for Algorithm II: 2D-11D LP, σq = 0.0005.
	Figure 26. Average NEES for Algorithm II: 2D-3D LP, σq = 0.002.
	Figure 27. Average RMSE for Algorithm II: 2D-3D LP, σq = 0.002.
	Figure 28. Average NEES for Algorithm II: 2D-4D LP, σq = 0.002.
	Figure 29. Average RMSE for Algorithm II: 2D-4D LP, σq = 0.002.
	Figure 30. Average NEES for Algorithm II: 2D-6D LP, σq = 0.002.
	Figure 31. Average RMSE for Algorithm II: 2D-6D LP, σq = 0.002.
	Figure 32. Average NEES for Algorithm II: 2D-11D LP, σq = 0.002.
	Figure 33. Average RMSE for Algorithm II: 2D-11D LP, σq = 0.002.
	Figure 34. Average NEES for Algorithm II: 2D-16D LP, σq = 0.002.
	Figure 35. Average RMSE for Algorithm II: 2D-16D LP, σq = 0.002.

	LIST OF TABLES

	Table 1. Example of 4D cost enumeration for Track 1: three measurements per scan.

	Table 2. Number of N-tuple cost evaluations c for various dimensions N with a fixed number of measurements M per scan.
	Table 3. Number of Kalman filters needed to generate cost c for various dimensions N with a fixed number of measurements M per scan.

	Table 4. Example 4D with calculated costs c: circled sections are stored cost values.

	Table 5. Number of Kalman filters needed in reduced set where previously calculated costs c and filter outputs are stored for various dimensions N with a fixed number of measurements M per scan.
	Table 6. Ratio of number of Kalman filters calculated for full set (per Table 3) vs reduced set (per Table 5). In both sets, N is the dimensional size, and there is a fixed number of measurements M per scan.

	Table 7. Comparison of Algorithm I and II functions for calculating the number of cost evaluations and the number of Kalman filters in a reduced set for a single track and a batch length (N − 1), where m is the varying number of measurements for scan n from 1 to (k − 1), and k is the dimensional assignment from 2 to N. The value ln is the number of 2D LP extracted measurements for scan n from 1 to (k − 1), and k is the dimensional assignment from 2 to N. Note that, for any scan n, ln ≤ L where L is the number of tracks.

	Table 8. Algorithm I correct track crossings (both targets are being tracked) in 100 trials if σq = 0.0005, with 95% confidence intervals. Batch lengths are 1, 2, and 3 for λ = 0.0, 0.01, 0.02, and 0.05.

	Table 9. Algorithm II correct track crossings (both targets are being tracked) in 100 trials if σq = 0.0005, with 95% confidence intervals. Batch lengths are 1, 2, 3, 5, and 10 for λ = 0.0, 0.01, 0.02, and 0.05.

	Table 10. Algorithm II correct track crossings (both targets are being tracked) in 100 trials if σq = 0.002, with 95% confidence intervals. Batch lengths are 1, 2, 3, 5, 10, and 15 for λ = 0.0, 0.01, 0.02, and 0.05.

	LIST OF ABBREVIATIONS AND ACRONYMS

	I. INTRODUCTION

	I.A Background

	I.B Review of Batch-Oriented MTT Algorithms

	II. ALGORITHM DESCRIPTION

	II.A Motion Model Assumptions
	II.B Measurement Model Assumptions

	II.C Algorithm I: MDA Algorithm

	II.D Algorithm II: A Faster, Suboptimal Version via 2D-ND MDA

	III. SIMULATION AND RESULTS

	IV. CONCLUSIONS

	LIST OF REFERENCES

	ACKNOWLEDGMENTS

	APPENDIX

